Iterative Regularized Image Restoration Using Local Constraints

نویسندگان

  • Min-Cheol Hong
  • Tania Stathaki
  • Aggelos K. Katsaggelos
چکیده

In this paper, we propose a spatially adaptive image restoration algorithm, using local statistics. The local variance, mean and maximum value are utilized to constraint the solution space. These parameters are computed at each iteration step using partially restored image. A parameter defined by the user determines the degree of local smoothness imposed on the solution. The resulting iterative algorithm exhibits increased convergence speed when compared with the nonadaptive algorithm. In addition, a smooth solution with a controlled degree of smoothness is obtained. Experimental results demonstrate the capability of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Segmentation by Flexible Models Based on Robust Regularized Networks

The object of this paper is to present a formulation for the segmentation and restoration problem using flexible models with a robust regularized network (RRN). A two-steps iterative algorithm is presented. In the first step an approximation of the classification is computed by using a local minimization algorithm, and in the second step the parameters of the RRN are updated. The use of robust ...

متن کامل

Iterative image restoration algorithms

5. 6. I. 8. 9. IO. Introduction Review of deterministic iterative restoration algorithms 2.1. Basic iterative algorithm 2.1.1. Derivation 2.1.2. Convergence 2.2. Basic iterative algorithm with reblurring 2.2.1. Derivation 2.2.2. Convergence and rate of convergence 2.3. Basic iterative algorithm with constraints 2.3. I. Derivation and convergence 2.3.2. Experiment I 2.4. Method of projecting ont...

متن کامل

Adaptive image restoration using a local neural approach

This work aims at defining and experimentally evaluating an iterative strategy based on neural learning for blind image restoration in the presence of blur and noise. A salient aspect of our solution is the local estimation of the restored image based on gradient descent strategies able to estimate both the blurring function and the regularized terms adaptively. Instead of explicitly defining t...

متن کامل

A General Framework for Nonlinear Regularized Krylov-Based Image Restoration

This paper introduces a new approach to computing an approximate solution of Tikhonov-regularized large-scale ill-posed problems with a general nonlinear regularization operator. The iterative method applies a sequence of projections onto generalized Krylov subspaces using a semi-implicit approach to deal with the nonlinearity in the regularization term. A suitable value of the regularization p...

متن کامل

Iterative evaluation of the regularization parameter in regularized image restoration

In this paper a nonlinear regularized iterative image restoration algorithm is proposed, according to which no prior knowledge about the noise variance is assumed. The algorithm results from a set-theoretic regularization approach, where bounds of the stabilizing functional and the noise variance, which determine the reg-ularization parameter, are updated at each iteration step. Sufficient cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997